
Privacy Analysis of Android Apps: Implicit
Flows and Quantitative Analysis

Gianluca Barbon1, Agostino Cortesi1(B), Pietro Ferrara2, Marco Pistoia2,
and Omer Tripp2

1 Università Cá Foscari Venezia, Venice, Italy
cortesi@unive.it

2 IBM Thomas J.Watson Research Center, Yorktown Heights, USA

Abstract. A static analysis is presented, based on the theory of abstract
interpretation, for verifying privacy policy compliance by mobile appli-
cations. This includes instances where, for example, the application
releases the user’s location or device ID without authorization. It prop-
erly extends previous work on datacentric semantics for verification of
privacy policy compliance by mobile applications by (i) tracking implicit
information flow, and (ii) performing a quantitative analysis of infor-
mation leakage. This yields to a novel combination of qualitative and
quantitative analyses of information flows in mobile applications.

1 Introduction

Security threats are increasing in the mobile space, in particular in the Android
environment. Specifically, mobile devices contain different sorts of confidential
information that software might access. Such information is usually protected by
permissions. However, the solutions provided by current mobile operating systems
are not satisfying, and expose the user to various threats [8]. In addition, vari-
ous applications and (e.g., analytics and advertisement) libraries make use of and
sometimes leak user confidential data. Mobile security is also a major concern in
an enterprise environment, where firms allow the use of company applications in
the employee’s personal device, increasing the risk of leakage of confidential busi-
ness data. Therefore, there is and increasing request and need to formally verify
the behavior of mobile applications, and to assess (and possibly limit) the quan-
tity of released data. On the opposite side, a complete absence of data leakage of
data would compromise the functionalities of mobile software. For instance, a nav-
igation app like Waze needs to access the user location and communicate it to its
servers in order to show appropriate traffic information. However, the user might
want to prevent to leakage of her location to the advertisement engine. Ideally, we
would like to impose — via suitable privacy policies — constraints on levels of
data release, and give the user better awareness of the direct and indirect actual
information flow concerning her personal data.

In this context, current research follows two main approaches: a statisti-
cal one [14,17] and a language based one (e.g., information flow taint analy-
sis) [1,11,21–24]. Both approaches suffer some weaknesses: the former does not
c© IFIP International Federation for Information Processing 2015
K. Saeed and W. Homenda (Eds.): CISIM 2015, LNCS 9339, pp. 3–23, 2015.
DOI: 10.1007/978-3-319-24369-6 1



4 G. Barbon et al.

fit well for qualitative analysis, while the latter as it is too strict, due to the fact
that the non-interference notion [7] yields too many false positives limiting the
effectiveness of the analysis.

In this paper, we extend our previous work [4]. This includes two primary
contributions: (i) we investigate also implicit flows, where previously we consid-
ered only direct information release paths, and (ii) we relate explicit and implicit
information flow to a quantitative notion of information leakage. We formalize
our approach in the abstract interpretation framework. The advantage of such
a method is that it enabes a general abstraction of all possible executions of a
given program. Therefore, following the abstract-interpretation framework [6],
we design an enhanced concrete semantics that formalizes how the expressions
generated by the program’s execution maintain footprints of (possibly confiden-
tial) data stored in the local data-store of the mobile device. With this formal-
ization of the concrete semantics, we show how to create a sound abstraction
such that the analysis is computable.

This work leads to the definition of a framework that merges quantitative
and qualitative approaches by taking advantage of their respective strengths.
We exploited the evaluation of single operators for the former approach and the
collection of quantities of released information for the latter. Last, but certainly
not least, the definition of this method has revealed the important role of the
implicit flow in the leakage of secret variables. We evaluated the effectiveness of
this framework over some benchmark examples.

The paper is structured as follows. After a brief introduction that describes
related research and fundamental notions in Section 2, Section 3 recalls the
semantics introduced by Cortesi et al. [4] extending it to capture implicit flows
as well. Section 4 introduces the new quantitative approach that is added to the
semantics described in the previous Sections. Section 5 introduces an abstraction
of the quantitative analysis. Finally, in Section 6 a few significant examples of
real working applications are presented and analyzed. Section 7 concludes.

2 Background

This Section introduces some important notions that will be used throughout
the rest of the paper, and briefly describes the current related research.

Implicit Flows. Implicit flows were described by Denning [7] in 1976. Implicit
flows have origins from the so called control statements, like if and while state-
ments, where they are generated by their conditional expression. For instance,
consider the following example:

if b then x = 0 else x = 1;

Even if the final value of x does not allows to directly recover the value of b, the
latter affects the value of x, and an indirect information flow occurs from b to x.
Of course, implicit flows may yield to malicious effects[19].



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 5

Quantitative Approaches. A quantitative approach tracks some quantity, or
measure, of leaked information. In [17] a new technique is proposed for deter-
mining the quantity of sensitive information that is revealed to public. The main
idea presented by the authors consists in computing a maximum flow between
the program inputs and the outputs, and by setting a limit on the maximum
quantity of information revealed. The information flow is measured using a sort
of network flow capacity, where the maximum rate of an imaginary fluid into
this network represents the maximum extent of revealed confidential informa-
tion. This method requires a dynamic approach in order to construct the graph,
by performing multiple runs of the target program.

Quantitative Value Expressed as Bits. McCamant et al. [17] introduced a
quantity concept in order to measure bits of information that can be released by
the observation of a specific execution of a program. One of the first attempts
to quantify information flow is the one of Lowe [14]. The author described quan-
tity as number of bits, and defined the information flow as information passing
between an high level user and a low level user through a covert channel. An
interesting feature presented in this work consists in the assignment of 1 bit
of quantity also with absence of information flow. This means that the author
considers the absence of information as having value 1 bit. Finally they also intro-
duce a time notion in the flow analysis. Another interesting approach is the one
by Clark et al.[2,3]. First, they analyse k bit variables, where 2k are the values
that can be represented from such variables. Second, they relate the maximum
content of a variable to its data type, and they consider this as the possible
quantity of leakage. Finally, they define the difference between the quantity of
information of a confidential input and the amount of leaked information.

Security in Mobile Environments. Nowadays smartphones are used to store,
modify and collect private and confidential data, e.g. location data or phone
identifier. At the same time, a lot of malicious applications able to stole data
or to track users exist. Mobile operating systems are not able to grant to users
an appropriate control over confidential data and on how applications manage
such data [8]. These limits make these platforms a potential target for attackers.
An evolution of threats in mobile environments has been stressed also by the
MacAfee Labs Threats Report [15]; in particular it underlines the existence of
untrusted marketplaces and the increasing diffusion of open-source and commer-
cial mobile malware source code, that facilitate the creation of such threats by
unskilled attackers. Among mobile operating systems, Android is currently the
most prevalent one [13], thus becoming the target of various threats. This mobile
environment present different vulnerabilities. First, there is a lack of common
definitions for securities and a high volume of available applications that guar-
antees the diffusion of malicious programs [9]. Second, many applications make
use of private information, like the IMEI (International Mobile Station Equip-
ment Identity), and of advertising and analytic libraries, that sends user data to
remote servers for profiling. Third, the opportunity to install also applications



6 G. Barbon et al.

coming from untrusted marketplaces makes the verification of these applications
harder [18]. Last, but not least, even if Android requests to grant permission
in order to install an application, this kind of control is not sufficient to avoid
undesirable behaviour, because restrictions are not fine-grained [10,12].

Confidentiality Analysis in Mobile Environments. The importance of con-
fidentiality analysis is growing in recent years, especially in the mobile space. In
this field two main approaches can be found: dynamic and static analysis meth-
ods. Among the works that use the former method we can find those regarding
the evaluation of permission-hungry mobile applications [1,18]. In particular,
the work of Enck et al. [8] presents TaintDroid, a tool that monitors sensitive
data by using real time tracking, avoiding the needing to get access to the appli-
cations source code. The main idea consists in tracking sensitive data that flows
through systems interfaces, used by applications to get access to local data. This
approach has some limitations. For instance, it does not allow the tracking of
control flows, and generates false positives. Another approach is the one of Horny-
ack et al. with AppFence [12], which imposes privacy controls by retrofitting the
Android environment, without the need to modify applications. Yet another app-
roach, by Tripp and Rubin [25], is to reason about information release in terms
of data values, rather than data flow, where the judgment is based on value
similarity measures fed into a Bayesian learning algorithm. However, dynamic
approaches present some weaknesses. First, they fail to discover some malicious
behaviour, because applications have learned to recognize analysis during exe-
cution [10]. Second, the majority of dynamic approaches uses coarse-grained
approximations that lead to false alarms and also missed leaks [1], while on the
contrary static ones are able to discover potential leaks before the execution of
the analysed application.

3 Collecting Semantics

In this section we introduce the collecting semantics, that consists in the first
fundamental step of our framework design. We define the syntax, the domains,
and the semantics with a specific focus on control statements.

3.1 Syntax

The formalization is focused onthree types of data: strings (s ∈ S), integers
(n ∈ Z) and Booleans (b ∈ B). sexp, nexp, and bexp denotes string, integer,
and Boolean expressions, respectively. � is used to represent data-store entries,
and lexp denotes label expressions. For instance, string expressions are defined
by: sexp ::= s | sexp1 ◦ sexp2 | encrypt(sexp, k) | sub(sexp, nexp1, nexp2) |
hash(sexp) | read(lexp), where ◦ represents concatenation, encrypt the encryp-
tion of a string with a key k, sub the substring of sexp between n1 and n2, hash
the computation of the hash value, and read the function that returns the value
in the data-store that corresponds to the given label.



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 7

3.2 Domain

By adexp we denote an atomic data expression that tracks the data sources of
a specific value. Formally, an atomic data expression adexp is a set of elements
〈�i, {(opj , l

′
j) : j ∈ J}〉, representing that the datum corresponding to label �i

has been combined with data corresponding to labels �′
j through operators opj

to get the actual value of the expression.
The set of atomic data expressions is defined by: D = {〈�i, Li〉 : i ∈ I ⊆

N, �i ∈ Lab, Li ⊆ ℘(Op × Lab)}, where Lab is the set of labels, and Op is the set
of operators.

An environment relates variables to their values as well as to their atomic
data expression. Formally, Σ = D × V , where (i) D : Var −→ ℘(D) maps local
variables in Var to a corresponding adexp, and (ii) V : Var −→ (Z ∪ S) is the
usual environment that tracks value information. The special symbol � represents
data coming from the user input and from the constants of the program. Instead,
data coming from the concrete data-store C are represented by= {〈�i, ∅〉 : i ∈
I} ⊆ D such that ∀i, j ∈ I : i �= j ⇒ �i �= �j , and �i �= �.

3.3 Collecting Semantics

We extend the notion of atomic data expressions to collect also implicit flows
generated by if and while statements. Such flows are treated in the same way
as explicit flows by collecting the Boolean expression (bexp) of a conditional or
loop statement, and considering it as an adexp with its operators and sources.

Definition 1 (Extended Atomic Data Expressions). We redefine the set
of atomic data expressions as: D =

〈{〈�i, Li〉 : i ∈ I}, {〈�j , Lj〉 : j ∈ J}〉 where
L ⊆ ℘(Op × Lab).

An extended atomic data expression can be seen as a pair of two atomic data
expressions, where the second one refers to the implicit flows (notice that also
a Boolean or relational operator may appear). Formally, d = 〈de, di〉, where de

and di correspond to the explicit and implicit flows, respectively. In this way we
collect also the Boolean operators.

Consider the conditional statement: if exp then x = case1 else x = case2.
We can interpret each expression as a combination of explicit and implicit flow:

dif cond = 〈de, di〉
dcase1 = 〈de

case1
, di

case1
〉

dcase2 = 〈de
case2

, di
case2

〉

Notice that di in case1 and case2 expresses only the implicit flow generated
inside the two branches of the if statement, and it does not include the implicit
flow that comes from the evaluation of the Boolean expression exp. Then, if the
case1 is chosen, we obtain: dresult =

〈
de

case1
, {di

case1
∪ de

if ∪ di
if}〉

where de
if and

di
if represent the flows in the if condition, both collected in the implicit flow of

all the subsequent expressions. The value associated to x after the if-then-else



8 G. Barbon et al.

statement makes explicit that x has implicit dependence on the sources of the
Boolean expression. For instance, if exp = y ≥ 0, it will track that the value of
x is dependent on the value of y.

We denote by SN : nexp×V → Z, SS : sexp×V → S, and SB : bexp×V →
{true, false} the standard concrete evaluations of numerical, string, and Boolean
expressions. In addition, SL : lexp × Σ → Lab that returns a data label given a
label expression. The semantics of expressions on atomic data SA : sexp × Σ →
℘(D) is described in Figure 1. The semantics has been improved w.r.t. [4] with
a new operator, checkpwd(sexp1, sexp2), that returns true if a secret password
is equal to a given value. In addition, we track both explicit and implicit flows.
In particular, we do not create any implicit flow, and we simply propagate the
implicit flows generated by previous expressions:

〈
S[[c]](a, v), {〈�j , Lj〉 : j ∈ J}〉.

Similarly, we rewrite the semantics of statements that create implicit flow,
that is, the semantics of if and while statements (Fig. 2). The definition of this
semantics is split into explicit (Se) and implicit (Si) flows. We add the skip
statement to handle the exit from a loop statement like the while.

SA[[x]](a, v) = a(x)
SA[[read(lexp)]](a, v) = {〈SL[[lexp]](a, v), ∅〉}

SA[[encrypt(sexp, k)]](a, v) = {〈�1, L1 ∪ {([encrypt, k], �1)}〉 : 〈�1, L1〉 ∈ SA[[sexp]](a, s, n)}
SA[[s]](a, v) = {〈�, ∅〉}

SA[[sexp1 ◦ sexp2]](a, v) = {〈�1, L1 ∪ {(◦, �2)}〉, 〈�2, L2 ∪ {(◦, �1)}〉 :
〈�1, L1〉 ∈ SA[[sexp1]](a, v) , 〈�2, L2〉 ∈ SA[[sexp2]](a, v)}

SA[[sub(sexp, k1, k2)]](a, v) = {〈�1, L1 ∪ {([sub, k1, k2], �1)}〉 : 〈�1, L1〉 ∈ SA[[sexp]](a, v)}
SA[[hash(sexp)]](a, v) = {〈�1, L1 ∪ (hash, �1)〉 : 〈�1, L1〉 ∈ S[[sexp]](a, v)}

SA[[checkpwd(sexp, s)]](a, v) = {〈�1, L1 ∪ {(checkpwd, �)}〉 : 〈�1, L1〉 ∈ SA[[sexp1]](a, v)}

Fig. 1. Semantics of Expressions on Atomic Data

S[[x := sexp]](a, v) = (a[x �→ SA[[sexp]](a, v)], v[x �→ SS [[sexp]](v)])
S[[skip]](a, v) = (a, v)

S[[send(sexp)]](a, v) = (a, v)
S[[c1; c2]](a, v) = S[[c2]](S[[c1]](a, v)))

S[[if c1 then c2 else c3]](a, v) =

⎧
⎪⎪⎨

⎪⎪⎩

〈Se[[c2]](a, v), Si[[c2]](a, v) ∪ Se[[c1]](a, v) ∪ Si[[c1]](a, v)〉
if SB [[c1]](v)

〈Se[[c3]](a, v), Si[[c3]](a, v) ∪ Se[[¬c1]](a, v) ∪ Si[[c1]](a, v)〉
otherwise

S[[while c1 do c2]](a, v) = S[[ if (c1) then (c2; while c1 do c2) else skip ]](a, v)

Fig. 2. Concrete Semantics of Statements

Example. Suppose that y contains a value arising from a data store labeled �1,
while x contains user input. We assume that > y.

1 y = read(�1);
2 x = userinput ();
3 w = 9;



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 9

4 if (x <= y)
5 z = w;
6 else
7 z = y+3;
8 x = x + z;

The following are the expressions computed by the collecting semantics, where
the subscript represents the code line of the expression:

y1 :
〈{〈�1, ∅〉}, ∅〉

(x<=y)4 :
〈{〈�1, {(>=, �)}〉}, ∅〉

y+37 :
〈{〈�1, {(+, �)}〉}, ∅〉

z=y+37 :
〈 {〈�1, {(+, �)}〉}
︸ ︷︷ ︸

explicit flow

, {〈�1, {(<, �)}〉}
︸ ︷︷ ︸

implicit flow

〉

x=x+z8 :
〈{〈�1, {(+, �)}〉}, {〈�1, {(<, �)}〉}〉

The first three expressions are not affected by implicit flows, so the implicit
component in these expressions is ∅. The second expression refers to the if
Boolean expression, and the fourth one refers to the assignment of the else
branch, and it takes into account the implicit flow generated by the if statement.

4 Quantitative Semantics

In this Section, we extend the collecting semantics by introducing a quantitative
notion of information flow.

4.1 Quantitative Concrete Domain

We begin by representing values having a binary form to express quantities of
information flows. In this way, we adopt a standardized evaluation of quantities
coming from different data types.

Definition 2 (Label Dimension). Let �i be the label of a location in the data-
store. ω returns the size of the memory location corresponding to the given label,
and it is defined by nbit�i := ω(�i), where nbit is the retrieved dimension in bits.

The value returned ω depends on the particular type of the datum:

– Numbers: for the sake of simplicity we consider only integer num-
bers. The number of bits for a label containing such kind of data is:
nbits = �log2(n)� + 1,

– String: we adopt a simplified representation of characters. In particular, we
consider an encoding representing only English alphabet (with uppercase and
lowercase letters) and numerical digits. We then have 26+26+10 elements.
Thus this encoding requires 6 bits for each character, and nbits = 6 × lstr

where lstr represents the number of characters of string str, and
– Boolean: such values can be only 0 or 1, so they require only 1 bit.



10 G. Barbon et al.

We now extend the collecting semantics to take into account quantities of
information by adding a new expression associated to the extended adexp to the
concrete state.

Definition 3 (Quantitative Expression). We define a quantitative expres-
sion qadexp as a sequence of pairs of labels associated with quantitative values
〈�, q〉. This collects the quantity of information generated by implicit flows for
the given label �. This sequence is combined with a dq in qadexp in a unique
expression as follows:

d := ( 〈de, di〉, dq )

Therefore, we represent data expressions as follows:

D =
( 〈{〈�i, Li〉 : i ∈ I}, {〈�j , Lj〉 : j ∈ J}〉, {〈�k, qk〉 : k ∈ J} )

where �k are the labels used in statements that generate implicit flow, while qk

is the associated quantity of information.

Every single pair 〈�k, qk〉 tracks the quantity of information that label �k

potentially released through implicit flow. Notice that the expression d :=
( 〈de, di〉, dq ) highlights how our analysis is the result of the combination of
two approaches, and in particular (i) the first two components expression comes
from a qualitative approach to explicit and implicit flows, and (ii) the last one
is the result of a quantitative approach.

We define as Q the domain of quantities of information. We are now in
position to introduce a function that describes how quantities are collected.

Definition 4 (Quantitative Function φ). Let φ be a function that updates a
quantitative value each time the associated label is involved in an implicit flow,
such that:

val�post := val�pre + φstm(�)

where φstm : � �→ val and pre and post refer to the statement ( stm) execution.

Quantities are represented as an interval [val, val] were higher and lower
bound coincide. This will allow an easier lift to the abstract value. Anyway, for
the sake of readability, the singleton interval [val, val] will be denoted by a single
value val.

We have to track quantities of implicit flow generated by if and while
statements. Conditional expressions can result only in true and false. Thus, the
information obtained from the evaluation of a Boolean condition consists only
of one bit [16].

For the sake of simplicity, we consider only the > and < (strict) operators.
This avoids problems with equalities (a == b) allowing the collection of only one
bit of information for each if statement [2,3]. Figure 3 defines the semantics of
conditional expressions. Notice that we do not yet introduce quantities, while
we only express how to collect equality in conditional statements using integers
instead of Boolean values..



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 11

S[[sexp]](a, v) = {〈�1, L1 ∪ {(>, �)}〉 : 〈�1, L1〉 ∈ SA[[sexp1]](a, v)}
S[[¬sexp]](a, v) = {〈�1, L1 ∪ {(<, �)}〉 : 〈�1, L1〉 ∈ SA[[sexp1]](a, v)}

S[[sexp1 > sexp2]](a, v) = {〈�1, L1 ∪ {(>, �2)}〉, 〈�2, L2 ∪ {(<, �1)}〉 :
〈�1, L1〉 ∈ SA[[sexp1]](a, v) , 〈�2, L2〉 ∈ SA[[sexp2]](a, v)}

S[[sexp1 < sexp2]](a, v) = {〈�1, L1 ∪ {(<, �2)}〉, 〈�2, L2 ∪ {(>, �1)}〉 :
〈�1, L1〉 ∈ SA[[sexp1]](a, v) , 〈�2, L2〉 ∈ SA[[sexp2]](a, v)}

Fig. 3. Concrete Semantics of Conditional Expressions

4.2 Quantitative Concrete Semantics

Let ϕ be function that maps variables to quantities (ϕ : Var → qadexp). We
now introduce the quantity notion into our quantitative collecting semantics.
The initial quantity value is φstm(�i) = 0 ∀i, and it is modified by φstm only
for the statements that generate implicit flow. This means that in the other
expressions the ϕ component will be carried as is. The new semantics is defined
in Figures 4, 5 and 6.

SA[[x]](a, ϕ, v) = a(x)
SA[[read(lexp)]](a, ϕ, v) = {〈SL[[lexp]](a, ϕ, v), ∅〉}

SA[[encrypt(sexp, k)]](a, ϕ, v) = {〈�1, L1 ∪ {([encrypt, k], �1)}〉 :
〈�1, L1〉 ∈ SA[[sexp]](a, ϕ, s, n)}

SA[[s]](a, ϕ, v) = {〈�, ∅〉}
SA[[sexp1 ◦ sexp2]](a, ϕ, v) = {〈�1, L1 ∪ {(◦, �2)}〉, 〈�2, L2 ∪ {(◦, �1)}〉 :

〈�1, L1〉 ∈ SA[[sexp1]](a, ϕ, v) ,
〈�2, L2〉 ∈ SA[[sexp2]](a, ϕ, v)}

SA[[sub(sexp, k1, k2)]](a, ϕ, v) = {〈�1, L1 ∪ {([sub, k1, k2], �1)}〉 :
〈�1, L1〉 ∈ SA[[sexp]](a, ϕ, v)}

SA[[hash(sexp)]](a, ϕ, v) = {〈�1, L1 ∪ (hash, �1)〉 :
〈�1, L1〉 ∈ S[[sexp]](a, ϕ, v)}

SA[[checkpwd(sexp, s)]](a, ϕ, v) = {〈�1, L1 ∪ {(checkpwd, �)}〉 :
〈�1, L1〉 ∈ SA[[sexp1]](a, ϕ, v)}

Fig. 4. Quantitative Semantics of Expressions on Atomic Data

S[[x := sexp]](a, ϕ, v) = (a[x �→ SA[[sexp]](a, ϕ, v)], v[x �→ SS [[sexp]](v)])
S[[skip]](a, ϕ, v) = (a, ϕ, v)

S[[send(sexp)]](a, ϕ, v) = (a, ϕ, v)
S[[c1; c2]](a, ϕ, v) = S[[c2]](S[[c1]](a, ϕ, v)))

Fig. 5. Quantitative Concrete Semantics of Statements



12 G. Barbon et al.

S[[if c1 then c2 else c3]](a, v) =

• if SB [[c1]](v) is True then:

let (a′, ϕ′, v′) = 〈Se[[c2]](a, ϕ, v),
Si[[c2]](a, ϕ, v) ∪ Se[[c1]](a, ϕ, v) ∪ Si[[c1]](a, ϕ, v)〉

in (a′, ϕ′[(�i, qi)/(�i, qi + φstm(c1)) : �i ∈ src(c1)], v
′)

• otherwise:

let (a′, ϕ′, v′) = 〈Se[[c3]](a, ϕ, v),
Si[[c3]](a, ϕ, v) ∪ Se[[¬c1]](a, ϕ, v) ∪ Si[[c1]](a, ϕ, v)〉

in (a′, ϕ′[(�i, qi)/(�i, qi + φstm(c1)) : �i ∈ src(c1)], v
′)

where φstm is the quantitative function in Def. 4

S[[while c1 do c2]](a, ϕ, v) =

S[[ if (c1) then (c2; while c1 do c2) else skip ]](a, ϕ, v)

Fig. 6. Quantitative Concrete Semantics of Control Statements

5 Abstract Semantics

We now extend the abstract semantics proposed by Cortesi et al. [4] to implicit
flows and a quantitative analysis. Our abstract semantics is parameterized by
a value domain V a, and a label abstraction. First of all, we need to define a
computable abstraction of quantities.

Definition 5 (Quantity Value Abstraction). The quantity associate with
label expressions is an interval. Each label �a is associated to an interval of
quantities where the lower and the upper bounds are the minimum and the maxi-
mum quantities of information that can be released through the implicit flow for
that specific label. Therefore, the abstract qadexp is defined as 〈�a

k, qa
kmin

, qa
kmax

〉.
If we have unbounded quantities, the analysis reveals a complete leakage of

the associated label. In this case, the upper bound of the intervals is unbounded.
Instead, for the lower bound the minimum quantity is zero.

5.1 Atomic Data Abstraction Extension

We now define the atomic data abstraction extended for handling implicit flows
and quantities.

Definition 6 (Abstract Extended Atomic Data and Quantities). Let us
consider a set of atomic data and quantity values. We define abstract elements as
(〈{〈�a

w, La�
w , La�

w 〉 : w ∈ W}, {〈�a
z , La�

z , La�
z 〉 : z ∈ Z}〉, {〈�a

g , qa�
g , qa�

g 〉 : g ∈ Z})



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 13

where:

– �a
w is an element that abstracts labels in Lab to track explicit flow,

– �a
z and �a

g are elements that abstract labels in Lab to track implicit flow,
– La�

w = {(opa
iw, �a

iw) : i ∈ I} and La�
z = {(opa

jz, �
a
jz) : j ∈ J} represent the

under-approximation of �a
w and �a

z with labels abstracted by �a
iw and �a

jz, and
track explicit and implicit flows, respectively,

– La�
w = {(opa

iw, �a
iw) : i ∈ I ′} and La�

z = {(opa
jz, �

a
jz) : j ∈ J ′} represent the

over-approximation of �a
w and �a

z with labels abstracted by �a
iw and �a

jz, and
track explicit and implicit flows, respectively,

– La�
w ⊆ La�

w and La�
z ⊆ La�

z ,
– qa

g is an element that abstract quantites associated to a �a
g element,

– qa�
kg : k ∈ J is an under-approximation of the interval of possible quantities
of information associated to �a

g with values represented by qa
kg,

– qa�
kg : k ∈ J ′ is an over-approximation of the interval of possible quantities
of information associated to �a

g with values represented by qa
kg, and

– qa�
g � qa�

g .

As a corollary, we define the source set of an atomic datum 〈{�a
w : w ∈ W}, {�a

z :
z ∈ Z}〉 expressed as src(d).

Although we inherit the abstraction and concretization functions for the
explicit flows [4], we have to extend them to handle quantities.

Definition 7 (Quantitative Abstraction Function). We denote by αQ

the abstraction function that given a set {(�k, qk) : k ∈ J} returns
{(αLab(�k), qa�

k , qa�
k ) : k ∈ J}, where qa�

k , qa�
k represent the bounds of the interval

that approximates all possible quantitative values in the abstract domain Qa.

Definition 8 (Quantitative Abstraction Function for Atomic Data).
Given a concrete atomic datum d =

( 〈{〈�i, Li〉 : i ∈ I}, {〈�j , Lj〉 : j ∈
J}〉

, {〈�k, qk〉 : k ∈ J} )
, we define an abstraction function α : ℘(D) −→ AD

as:

αs(d) =
( 〈{〈αLab(�i), αLab(Li), αLab(Li)〉 : i ∈ I},
{〈αLab(�j), αLab(Lj), αLab(Lj)〉 : j ∈ J}〉,
{〈αLab(�k), αQ(qk)〉 : k ∈ J})

The abstraction function is then extended to sets by computing the upper bound
of the point-wise application of αs to all the elements of the given set.

5.2 Abstract Semantics of Statements

Expressions are abstracted via an abstract data label and an abstract value
(ADa and V a, respectively). In Figure 7 the abstract semantics of statements
taking into account implicit flows is defined Then, in Figure 8 this semantics
is extended with the quantitative dimension. We omit here the abstract seman-
tics of expressions, as it does not generate any implicit flow, and we refer the
interested reader to Cortesi et. al [4] for more details.



14 G. Barbon et al.

Sa[[x := sexp]](aa, va) = (aa, Sa
v [[x := sexp]](va))

Sa[[skip]](aa, va) = (aa, va)
Sa[[send(sexp)]](aa, va) = (aa, va)

Sa[[c1; c2]](a
a, va) = Sa[[c2]](S

a[[c1]](a
a, va))

Sa[[if c1 then c2 else c3]](a
a, va) =

〈
Sa
e [[c2]](a

a, Sa
e [[c1]](v

a)) 
 Sa
e [[c3]](a

a, Sa
e [[¬c1]](v

a)),
Sa
i [[c2]](a

a, Sa
e [[c1]](v

a)) 
 Sa
e [[c1]](a

a, va)

Sa
i [[c1]](a

a, va) 
 Sa
i [[c3]](a

a, Sa
e [[¬c1]](v

a))

Sa
e [[¬c1]](a

a, va) 
 Sa
i [[c1]](a

a, va)
〉

Sa[[while c1 do c2]](a, v) =

fix(Sa[[ if (c1) then (c2; while c1 do c2) else skip ]](aa, va))

Fig. 7. Abstract Semantics of Statements

Sa[[x := sexp]](aa, ϕa, va) = (aa[x �→ Sa
A[[sexp]](aa, ϕa, va)], va[x �→ Sa

S [[sexp]](va)])
Sa[[skip]](aa, ϕa, va) = (aa, ϕa, va)

Sa[[send(sexp)]](aa, ϕa, va) = (aa, ϕa, va)
Sa[[c1; c2]](a

a, ϕa, va) = Sa[[c2]](S
a[[c1]](a

a, ϕa, va))

Sa[[if c1 then c2 else c3]](a
a, ϕa, va) =

let (a′a, ϕ′a, v′a) =
〈
Sa
e [[c2]](a

a, ϕa, Sa
e [[c1]](v

a)) 
 Sa
e [[c3]](a

a, ϕa, Sa
e [[¬c1]](v

a)),
Sa
i [[c2]](a

a, ϕa, Sa
e [[c1]](v

a)) 
 Sa
e [[c1]](a

a, ϕa, va)

Sa
i [[c1]](a

a, ϕa, va) 
 Sa
i [[c3]](a

a, ϕa, Sa
e [[¬c1]](v

a))

Sa
e [[¬c1]](a

a, ϕa, va) 
 Sa
i [[c1]](a

a, ϕa, va)
〉

in (a′a, ϕ′a[(�ai , qa�
i , qa�

i )/(�ai , qa�
i + φa�

stm(c1), q
a�
i + φa�

stm(c1)) : �ai ∈ src(c1)], v
′a)

where φstm is the quantitative function in Def. 4

Sa[[while c1 do c2]](a
a, ϕa, va) =

fix(Sa[[ if (c1) then (c2; while c1 do c2) else skip ]](aa, ϕa, va))

Fig. 8. Quantitative Abstract Semantics of Statements

We need to abstract the number of iterations of a while loop to precisely
approximate the quantity of information leaked by a loop. Our approach is com-
posed by two steps: a while interval analysis approximating the number of iter-
ations, followed by an extended adexp collection with quantitative values.

Step (a): while Interval Analysis. We add a counter initialized to 0 at the
beginning, and we increment it by one at each loop iteration. In this way, we
can apply a standard interval analysis to infer an upper bound on the number
of iterations of a loop.



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 15

Example Consider the following program, where i represents the counter we
added:

1 x=−2 (i = 0)
2 while (x<27)
3 x= x+2 (i = i + 1)
4 print (x)

At the end of the analysis, the interval domain can infer i �→ [0..15] (e.g.,
by applying a narrowing operator after widening [5]). The upper bound of the
interval of variable i returns the number of iterations of the loop, that is, 15.
Then the upper bound on the number of iterations 15 becomes [1, 4], where 4
are the number of bits leaked in 15 iterations.

Step (b): Extended Adexp Collection with Quantitative Value. At the
end of the while interval analysis, we apply a quantitative value analysis.
Example Consider the following example:

1 secret = read(. . .)
2 found = false
3 while (!found) {
4 pwd = user input()
5 found = checkpwd(pwd, secret)}

At the end of the first iteration of the analysis of the loop, we obtain:

secret1 :
〈{〈�1, ∅, ∅〉}, ∅〉

found2 :
〈∅, ∅〉

!found3 :
〈∅, ∅〉

pwd4 :
〈∅, ∅〉

found5 :
〈{〈�1, {(checkpwd, �)}, {(checkpwd, �)}〉}, ∅〉

Notice that no quantitative information has yet been released. In fact, the
Boolean condition of the while loop is checked against a constant value (false)
during the first iteration. However, found might be still false, and the loop would
be iterated another time. Then, starting from the second iteration the implicit
flow will contain the new definition of the variable found, thus each expression
inside the scope of the while will be:
〈{

. . . explicit flow . . .
}
,
{〈�1, {(checkpwd, �)}, {(checkpwd, �), (<, �), (>, �}〉}〉

Notice that the function checkpw(p1,p2) returns a Boolean value, so one bit. This
means that we are accumulating a bit of information at each iteration.



16 G. Barbon et al.

As soon as the implicit flow comes into the picture, we have to consider the
quantity interval computed in step (a):

{ 〈{
. . . explicit flow . . .

}
,
{〈�1, {(checkpwd, �)}, {(checkpwd, �), (<, �), (>

, �}〉}〉, 〈�1, 1, 4〉 }

If inside a while loop there is an obfuscating operator (e.g., encryption or
hashing) applied to confidential data, we need to know the quantity of informa-
tion that is released by the operator. For instance, in the previous example the
operator checkpwd(p1,p2) checks if the password given by the user is correct,
and it returns a Boolean value. Thus the analysis accumulates a single bit at
each iteration, and the quantitative value will depend on the number of itera-
tions. However, other operators might release more information. In this case, we
compute the product of the number of iterations and the released bits.

6 Applications

In this Section, we discuss the results of our analysis of some examples listed in
the DroidBench application set [20], created by the Secure Software Engineering
group of the Technische Universität Darmstadt. This set is open source, and
it is a standard benchmark to test static and dynamic analyses. We chose the
examples that specifically deal with implicit flows.

An interesting comparison can be made with the work by Tripp and Rubin
[25], as they also used DroidBench as testing environment. Their approach per-
forms very well on the whole test set (also with respect to other tools, like
TaintDroid), but it suffers from false negatives in case of implicit flows. Our
analysis instead allows to cope with these particular cases, for instance the ones
due to custom transformations of private data in the ImplicitFlow1 test program.
This is because we adopted a different approach, that instead of looking for pri-
vacy sinks, observes the whole flow of confidential data and operations applied
to them.

For the sake of readability, we simplified some library functions, and we
added some semantic rules to support some primitive functions contained in
these examples, and that were not part of the minimal language we adopted in
our formalization. For each example, we describe the results of the collecting
semantics on a particular concrete state, and we then perform a two-stages
static analysis. First we illustrate the results without the quantitative component
qadexp, and we then discuss the results of the quantitative semantics.

6.1 ImplicitFlow1

The first example is an application that reads the device identifier (IMEI), obfus-
cates it, and then leaks it. The obfuscation can be performed with two functions
with two different obfuscation powers (namely, low and high).



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 17

1 public class ImplicitFlow1 extends Activity {
2

3 protected void onCreate (...) {
4 // ...
5

6 String imei = getDeviceId(); //device id
7 String obfuscatedIMEI
8 = obfuscateIMEI(imei);
9 writeToLog(obfuscatedIMEI);

10

11 obfuscatedIMEI
12 = hardObfIMEI(imei);
13 writeToLog(obfuscatedIMEI);
14 }
15

16 private String obfuscateIMEI(String imei){
17 String result = ””;
18 char [] imeiAsChar = imei.toCharArray();
19 int len = imeiAsChar.length();
20 int i = 0;
21 int shift = 49;
22

23 while ( i < len){
24 result += (char)
25 ((( int )imeiAsChar[i ]) + shift );
26 //returns ’a’ for ’0’, ’b’ for ’1’, ...
27 i++;
28 }
29 return result ;
30 }

31 private String hardObfIMEI(String imei){
32 char [] imeiAsChar = imei.toCharArray();
33 String result = ””;
34 int len = imeiAsChar.length();
35 int i = 0;
36

37 while ( i < len){
38 result += (char)
39 ((( int )imeiAsChar[i ]) +1 + (i i)%62);
40 i++;
41 }
42

43 return result ;
44 }
45

46 private void writeToLog(String message){
47 Log. i (”INFO”, message); //sink
48 }
49 }

First of all, we extend the semantics to the new functions contained in this
example. For the most part, this extension is very intuitive and straightforward.

SA[[getDeviceId()]](a, v) = {〈SL[[lexp]](a, v), ∅〉}
SA[[toCharArray(sexp)]](a, v) = {〈�1, L1 ∪ {(toCharArray, �1)}〉 : 〈�1, L1〉 ∈ SA[[sexp1]](a, v)}

SA[[length(sexp)]](a, v) = {〈�1, L1 ∪ {(length, �1)}〉 : 〈�1, L1〉 ∈ SA[[sexp1]](a, v)}
SA[[Log(sexp)]](a, v) = (a, v)

SA[[(typecast)sexp]](a, v) = {〈�1, L1 ∪ {(cast(type), �1)}〉 : 〈�1, L1〉 ∈ SA[[sexp1]](a, v)}

getDeviceId returns the IMEI from the datastore, toCharArray convert the
label to a char, length returns the dimension (in integer) of an array and Log
writes the argument to a log file. cast(type) represents the type casting. We
also add the modulo % operator to the semantics. We collect it as mod in
our domain, and its behavior is similar to other arithmetic operators. As for
arrays, when we refer to a single element of the array, we assume to perform a
SA[[sub(sexp, k1, k2)]](a, v) where k1 and k2 are the same element and are used
as a sort of index in the array.

Concrete Analysis. The device identifier IMEI is contained in the data-
store and can be retrieved through getDeviceId, that behaves like a
SA[[read(lexp)]](a, v). We also add a counter that allows to count the number
of iterations in the loop. Trivially, at the end of each cycle this value will be
equal to the dimension of the IMEI, that is, 14.



18 G. Barbon et al.

imei6 :
〈{〈�1, ∅〉}, ∅〉

imeiAsChar18 :
〈{〈�1, {(toCharArray, �1)}〉}, ∅〉

len19 :
〈{〈�1, {(length, �1)}〉}, ∅〉

while cond23 :
〈{〈�1, {(length, �1), (>, �)}〉}, ∅〉 (count1 = 0)

result24 :
〈{〈�1, {([sub, �, �], �1), (cast(int), �1), (+, �), (cast(char), �1), (+, �)}〉},{〈�1, {(length, �1), (>, �)}〉}〉

i27 :
〈∅,
{〈�1, {(length, �1), (>, �)}〉}〉

. . . (after loop exit the condition in the flow is inverted), (count1 = 14)
log47 :

〈{〈�1, {([sub, �, �], �1), (cast(int), �1), (+, �), (cast(char), �1), (+, �), . . .}〉},{〈�1, {(length, �1), (>, �)(<, �)}〉}〉
imeiAsChar32 :

〈{〈�1, {(toCharArray, �1)}〉}, ∅〉
len34 :

〈{〈�1 {(length, �1)}〉}, ∅〉
while cond37 :

〈{〈�1, {(length, �1), (>, �)}〉}, ∅〉 (count2 = 0)
result38 :

〈{〈�1, {([sub, �, �], �1), (cast(int), �1), (+, �), (×, �), (mod, �), (cast(char), �1),
(+, �)}〉}, {〈�1, {(length, �1), (>, �)}〉}〉

i40 :
〈∅,
{〈�1, {(length, �1), (>, �)}〉}〉

. . . (after loop exit the condition in the flow is inverted), (count2 = 14)
log47 :

〈{〈�1, {([sub, �, �], �1), (cast(int), �1), (+, �), (×, �), (mod, �), (cast(char), �1),
(+, �), . . .}〉}, {〈�1, {(length, �1), (>, �)(<, �)}〉}〉

As we can see from the concrete analysis, there is no noticeable difference
between the two functions. Indeed, both example apply these function inside a
loop, and in both the conditional expressions depend on the dimension of the
secret label.

Abstract Analysis. The main differences between the concrete and abstract
semantics consist in (i) considering when the loop condition holds and does not
(unlike the concrete semantics that always knows a precise value), and (ii) the
application of the interval analysis to over-approximate the number of iterations.
Notice that since the dimension of the IMEI does not change, the corresponding
label can be abstracted with full precision. The same applies to its dimension.

imei6 :
〈{〈�1, ∅, ∅〉}, ∅〉

imeiAsChar18 :
〈{〈�1, {(toCharArray, �1)}, {(toCharArray, �1)}〉}, ∅〉

len19 :
〈{〈�1, {(length, �1)}, {(length, �1)}〉}, ∅〉

while cond23 :
〈{〈�1, {(length, �1), (>, �)}, {(length, �1), (>, �)}〉}, ∅〉

result24 :
〈{〈�1, {([sub, �, �], �1), (cast(int), �1), (+, �), (cast(char), �1), (+, �)},

{([sub, �, �], �1), (cast(int), �1), (+, �), (cast(char), �1), (+, �)}〉},{〈�1, {(length, �1)}, {(length, �1), (>, �), (<, �)}〉}〉
i27 :

〈∅,
{〈�1, {(length, �1)}, {(length, �1), (>, �), (<, �)}〉}〉

log47 :
〈{〈�1, {([sub, �, �], �1), (cast(int), �1), (+, �), (cast(char), �1), (+, �)},

{([sub, �, �], �1), (cast(int), �1), (+, �), (cast(char), �1), (+, �), . . .}〉},{〈�1, {(length, �1)}, {(length, �1), (>, �), (<, �)}〉}〉
imeiAsChar32 :

〈{〈�1, {(toCharArray, �1)}, {(toCharArray, �1)}〉}, ∅〉
len34 :

〈{〈�1, {(length, �1)}, {(length, �1)}〉}, ∅〉
while cond37 :

〈{〈�1, {(length, �1), (>, �)}, {(length, �1), (>, �)}〉}, ∅〉
result38 :

〈{〈�1, {〈�1, {([sub, �, �], �1), (cast(int), �1), (+, �), (×, �), (mod, �),
(cast(char), �1), (+, �)}, {([sub, �, �], �1), (cast(int), �1), (+, �), (×, �),
(mod, �), (cast(char), �1), (+, �)}〉},{〈�1, {(length, �1)}, {(length, �1), (>, �), (<, �)}〉}〉



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 19

i40 :
〈∅,
{〈�1, {(length, �1)}, {(length, �1), (>, �), (<, �)}〉}〉

log47 :
〈{〈�1, {〈�1, {([sub, �, �], �1), (cast(int), �1), (+, �), (×, �), (mod, �),

(cast(char), �1), (+, �)}, {([sub, �, �], �1), (cast(int), �1), (+, �), (×, �),
(mod, �), (cast(char), �1), (+, �), . . .}〉},{〈�1, {(length, �1)}, {(length, �1), (>, �), (<, �)}〉}〉

Quantitative Analysis. The interval analysis approximates the minimum and
maximum number of iterations of the loop. Through these bounds, we compute
an interval of quantities, that infers the minimum and the maximum amount of
information revealed through implicit flows. However, in this particular example
the number of iterations can be precisely inferred because it is performed on a
fixed value (the dimension of the IMEI ). Thus, we infer that the loop is iterated
14 times. Each iteration of the loop leaks one bit of information. We now infer
the number of bits using the method described in the Section 5.2:

quantity = �log2(n iterations)� + 1 = 4 bits

So, in both loops, the qadexp is 〈�1, 4, 4〉.

6.2 ImplicitFlow2

In this example, the user has to type a password. Then, this password is com-
pared to the correct one, that comes from the data-store. After this evaluation,
a message is saved to a log file. This operation leaks information through an
implicit flow, since the logged message depends on the correctness of the pass-
word.

1 public class ImplicitFlow2 extends Activity {
2

3 protected void onCreate(. . .){
4 // ...
5 }
6

7 public void checkPassword(View view){
8 String userInputPassword = //user input
9 String superSecure = //secret password

10

11 if (checkpwd(superSecure,userInputPassword))
12 passwordCorrect = true;
13 else
14 passwordCorrect = false ;
15

16 if (passwordCorrect)
17 Log. i (”INFO”, ”Password is correct”);
18 else
19 Log. i (”INFO”, ”Password is not correct”);
20 }
21 }

Concrete Analysis. We reuse the semantics of Log defined for the previous
example (SA[[Log(sexp)]](a, v) = (a, v)). The abstract semantics is similar. We
now shows the results of the concrete semantics, assuming that the password
provided by the user is not correct. The concrete data-store contains only the
label that corresponds to the variable superSecure, that is, 〈�1, ∅〉.



20 G. Barbon et al.

superSecure9 :
〈{〈�1, ∅〉}, ∅〉

if condtion11 :
〈{〈�1, {(checkpwd, �)}〉}, ∅〉

passwordCorrect14 :
〈∅, {〈�1, {(checkpwd, �), (<, �)}〉

2nd if condition16 :
〈∅, {〈�1, {(checkpwd, �), (<, �)}〉

log19 :
〈∅, {〈�1, {(checkpwd, �), (<, �)}〉

Abstract Analysis. We now present the results of the abstract semantics. We
adopt the same label of the concrete semantics.

superSecure9 :
〈{〈�1, ∅, ∅〉}, ∅〉

if condtion11 :
〈{〈�1, {(checkpwd, �)}, {(checkpwd, �)}〉}, ∅}〉

passwordCorrect12,14 :
〈∅, {〈�1, {(checkpwd, �)}, {(checkpwd, �), (>, �), (<, �)}〉〉

2nd if condition16 :
〈∅, {〈�1, {(checkpwd, �)}, {(checkpwd, �), (>, �), (<, �)}〉〉

log17,19 :
〈∅, {〈�1, {(checkpwd, �)},
{(checkpwd, �), (>, �), (<, �), (>, �), (<, �)}〉〉

Quantitative Analysis. We abstract quantities with an interval. In this case
study, there is an implicit flow in the first if statement:

if condtion11 :
{〈{〈l1, {(checkpwd, �)}, {(checkpwd, �)}〉}, ∅〉, 〈�1, 1, 1〉}

This value is then propagated until the Log statement that leaks it.

6.3 ImplicitFlow3

Like in the previous example, this example checks if a password provided by
a user matches the correct password. However, in this case the information is
leaked through the creation of objects.

1 public class ImplicitFlow3 extends Activity {
2

3 protected void onCreate (...) {
4 // ...
5 }
6

7 public void leakData(View view){
8 String userIntPwd = //user input
9 String superSecure = //secret password

10

11 Interface classTmp;
12 if (checkpwd(superSecure,userIntPwd))
13 classTmp = new ClassA();
14 else
15 classTmp = new ClassB();
16

17 classTmp.leakInfo ();
18 }

19 interface Interface {
20 public void leakInfo ();
21 }
22

23 public class ClassA implements Interface{
24 public void leakInfo (){
25 Log. i (”INFO”, ”pwd correct”);
26 }
27 }
28

29 public class ClassB implements Interface{
30 public void leakInfo (){
31 Log. i (”INFO”, ”pwd incorrect”);
32 }
33 }
34 }

Concrete Analysis. We reuse the Log semantic described in the previous
example. We assume that the password typed by the user is correct. As in
the previous example, the concrete data-store contains only one label {〈�1, ∅〉}
corresponding to superSecure.



Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 21

superSecure9 :
〈{〈�1, ∅〉}, ∅〉

if condtion12 :
〈{〈�1, {(checkpwd, �), (>, �)}〉}, ∅〉

classTmp13 :
〈∅, {〈�1, {(checkpwd, �), (>, �)}〉}〉

leakInfo25 :
〈∅, {〈�1, {(checkpwd, �), (assert, l1)}〉}〉

Abstract Analysis. We adopt the same label abstraction.

superSecure9 :
〈{〈�1, ∅, ∅〉}, ∅〉

if condtion12 :
〈{〈�1, {(checkpwd, �), (>, �)}, {(checkpwd, �), (>, �)}〉}, ∅〉

classTmp13,14 :
〈∅, {〈�1, {(checkpwd, �)}, {(checkpwd, �), (>, �), (<, �)}〉}〉

leakInfo25,31 :
〈∅, {〈�1, {(checkpwd, �)}〉}, {〈�1, {(checkpwd, �), (>, �), (<, �)}〉}〉

Quantitative Analysis. In this example, there is only one if statement that
generates implicit flow. This statement exposes 1 bit of quantity of information:

if condtion12 :
{〈{〈�1, {(checkpwd, �), (>, �)}, {(checkpwd, �), (>, �)}〉}, ∅〉, 〈�1, 1, 1〉}

This value will remain the same in all the following qadexps.

6.4 Discussion

As emphasized by the examples above, the adoption of a quantitative analysis
allows the evaluation of quantities of confidential data that might be released.
In ImplicitFlow1, the analysis tells that an implicit flows exists, that confiden-
tial labels are contained in it, and it also estimate the potential quantities of
data released. This quantity is calculated by the operations implemented in the
code, so by the operations that obfuscate the confidential label. The application
of given policies [4] will allow to establish whether the released quantities are
allowed or not. Any considerations about the safeness of the analyzed application
are thus referred to the type of applied policy. In particular, as for ImplicitFlow1,
we are able to calculate how much the while loop affects the produced quantity of
data. Indeed, it allows to understand that, given a fixed (and possibly low) num-
ber of loop iterations, the quantity of confidential data that might be released will
not be high. In conclusion, this analysis is not only capable of locating implicit
flows, but also to evaluate their importance. In fact, if the released values will
be low, with respect to a given policy, the implicit flow will be negligible.

7 Conclusions

In this paper, we extended the framework for tracking explicit flows introduced
in [4] with respect to implicit flows and quantitative analysis, showing the effec-
tiveness of this approach on significant examples. This framework can support
complex hybrid policies, i.e. policies that can grant both qualitative and quanti-
tative thresholds.

Acknowledgments. Work partially supported by the Italian MIUR project “Security
Horizons”.



22 G. Barbon et al.

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. SIGPLAN Not. 49(6), 259–269
(2014)

2. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confiden-
tial data. Electronic Notes in Theoretical Computer Science 59(3), 1–14 (2002).
Quantitative Aspects of Programming Languages (Satellite Event for PLI 2001)

3. Clark, D., Hunt, S., Malacaria, P.: Quantified interference for a while language.
Electr. Notes Theor. Comput. Sci. 112, 149–166 (2005)

4. Cortesi, A., Ferrara, P., Pistoia, M., Tripp, O.: Datacentric semantics for verifica-
tion of privacy policy compliance by mobile applications. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 61–79. Springer, Heidelberg
(2015)

5. Cortesi, A., Zanioli, M.: Widening and narrowing operators for abstract interpre-
tation. Computer Languages, Systems & Structures 37(1), 24–42 (2011)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Confer-
ence Record of the Fourth ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 238–252. ACM Press (1977)

7. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19, 236–243 (1976)

8. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32(2),
5:1–5:29 (2014)

9. Enck, W., Octeau, D., Mcdaniel, P., Chaudhuri, S.: A study of android application
security. In: Proc. USENIX Security Symposium (2011)

10. Fritz, C., Arzt, S., et al.: Highly precise taint analysis for android application. Tech-
nical report, EC SPRIDE Technical Report TUD-CS-2013-0113 (2013). http://
www.bodden.de/pubs/TUD-CS-2013-0113.pdf

11. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Jour-
nal of Information Security 8, 399–422 (2009)

12. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the
droids you’re looking for: retrofitting android to protect data from imperious appli-
cations. In: Proc. 18th ACM Conf. on Computer and Communications Security,
pp. 639–652. ACM, New York (2011)

13. International Data Corporation. Worldwide Quarterly Mobile Phone Tracker 3q14.
http://www.idc.com/tracker/showproductinfo.jsp?prod-id=37 (accessed January
2015)

14. Lowe, G.: Quantifying information flow In: Proc. IEEE Computer Security Foun-
dations Workshop, pp. 18–31 (2002)

15. McAfee Labs. Threats Report. http://www.mcafee.com/ca/resources/reports/
rp-quarterly-threat-q3-2014.pdf (accessed December 2014)

16. Mccamant, S., Ernst, M.D.: A simulation-based proof technique fordynamic infor-
mation flow (2007)

17. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capac-
ity. SIGPLAN Not. 43(6), 193–205 (2008)

http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf
http://www.idc.com/tracker/showproductinfo.jsp?prod-id=37
http://www.mcafee.com/ca/resources/reports/rp-quarterly-threat-q3-2014.pdf
http://www.mcafee.com/ca/resources/reports/rp-quarterly-threat-q3-2014.pdf


Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis 23

18. Rasthofer, S., Arzt, S., Lovat, E., Bodden, E.: Droidforce: enforcing complex, data-
centric, system-wide policies in android. In: Proceedings of the 9th International
Conference on Availability, Reliability and Security (ARES). IEEE, September
2014

19. Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code.
In: Logics and Languages for Reliability and Security. NATO Science for Peace
and Security Series, vol. 25, pp. 301–322. IOS Press (2010)

20. Secure Software Engineering Group - Ec Spride. DroidBench. http://sseblog.
ec-spride.de/tools/droidbench/ (accessed February 2015)

21. Smith, G.: Principles of secure information flow analysis. In: Christodorescu,
M., et al. (eds.) Malware Detection. Advances in Information Security, vol. 27,
pp. 291–307. Springer (2007)

22. Sridharan, M., Artzi, S., Pistoia, M., Guarnieri, S., Tripp, O., Berg, R.: F4f: taint
analysis of framework-based web applications. In: OOPSLA. ACM (2011)

23. Tripp, O., Ferrara, P., Pistoia, M.: Hybrid security analysis of web javascript code
via dynamic partial evaluation. In: Proc. of the 2014 Int. Symposium on Software
Testing and Analysis, ISSTA 2014, pp. 49–59. ACM, New York (2014)

24. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. In: ACM PLDI, pp. 87–97. ACM (2009)

25. Tripp, O., Rubin, J.: A bayesian approach to privacy enforcement in smartphones.
In: USENIX Security (2014)

http://sseblog.ec-spride.de/tools/droidbench/
http://sseblog.ec-spride.de/tools/droidbench/

	Privacy Analysis of Android Apps: Implicit Flows and Quantitative Analysis
	1 Introduction
	2 Background
	3 Collecting Semantics
	3.1 Syntax
	3.2 Domain
	3.3 Collecting Semantics

	4 Quantitative Semantics
	4.1 Quantitative Concrete Domain
	4.2 Quantitative Concrete Semantics

	5 Abstract Semantics
	5.1 Atomic Data Abstraction Extension
	5.2 Abstract Semantics of Statements

	6 Applications
	6.1 ImplicitFlow1
	6.2 ImplicitFlow2
	6.3 ImplicitFlow3
	6.4 Discussion

	7 Conclusions
	References


